
 International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

95

Grey wolf optimization applied to the maximum flow problem

Raja Masadeh 1, *, Ahmad Sharieh 2, Azzam Sliet 2

1Software Engineering Department, The World Islamic Science and Education University, Amman, Jordan
2Computer Science Department, The University of Jordan, Amman, Jordan

A R T I C L E I N F O A B S T R A C T

Article history:
Received 21 March 2017
Received in revised form
5 June 2017
Accepted 10 June 2017

The problem of getting the maximum flow from source to destination in
networks is investigated in this paper. A proposed algorithm is presented in
order to solve Maximum Flow problem by using Grey Wolf Optimization
(GWO). The GWO is a recently established meta-heuristics for optimization,
inspired by grey wolves (Canis Lupus). In addition; in this current research,
K-means clustering algorithm is used to group each 12 vertices with each
other at one cluster according to GWO constraint. This work is implemented
and tested various datasets between 50 vertices and 1000 vertices. The
simulation results show rapprochement between experimental and
theoretical results.

Keywords:
Grey wolf optimization
Maximum flow problem
Meta-heuristic
Optimization

© 2017 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*Metaheuristic optimization mechanisms are
emerging and becoming very popular, the primary
categories of these techniques are Single-Solution-
Based and Population-Based. In the first category,
the search begins with a single elect solution
(Kirkpatrick et al., 1983).This unique elect solution is
enhanced over several iterations. In the second
category, it represents the optimization by starting
with a set of random solutions. This population is
enhanced over the course of iterations. The main
advantage that characterizes the population-based
Metaheuristic over the single-based algorithms is its'
high exploration power. This power is attained as it
works to find a global solution rather than local ones
(Munakata and Hashier, 1993). Maximum Flow
problem is considered as one of the various well
known basic problems of optimization in weighted
directed graphs. In addition, it could be applied to
numerous applications such as computer science and
engineering. Besides, it is solved by many
researchers using several methods (Tarjan, 1983).

The issue of Maximum Flow is to define an
optimal solution for a graph which is directed and
integer weighted; where the weight at each edge
(arc) interconnect two vertices (nodes) representing
the flow capacity of this arc. According to these
constraints, the goal reaches the maximum of total

* Corresponding Author.
Email Address: raja.masadeh@wise.edu.jo (R. Masadeh)
https://doi.org/10.21833/ijaas.2017.07.014
2313-626X/© 2017 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

flow from the source to the sink. This scenario
illustrates a simplistic version of the Maximum Flow
problem.

A directed flow network G= (V, E) is given, where
the number of vertices is represented by V and the
number of edges is noted by E. The weight at each
edge in the graph represents the capacity Cuv which
is nonnegative c (u, v)>= 0; where u and v belong to
V (Cormen et al., 2009). In addition, there are two
special vertices; the source which is start vertex and
sink which is the target vertex (Cormen et al., 2009).
For a vertex u in V let E (u) be the set of all edges
generated from vertex u, and Let F = max {Cuv by (u,
v) in E}.

Thus, the problem is to define an optimal solution
for a particular directed network where each edge
has a capacity. Under these constraints, the purpose
is to get the maximum total flow from a source
vertex to a sink vertex (Eppstein, 1998).
Representing the flow on the edge (u, v) in E by Xuv.a
Max Flow Optimization Model can be obtained
through Eq. 1 (Cormen et al., 2009).

𝑀𝑎𝑥 𝑓(𝑥) = ∑ 𝑋𝑢𝑣

𝑛
(𝑢,𝑣)∈𝐸(𝑠) (1)

where

∑ 𝑋𝑢𝑣 − ∑ 𝑋𝑣𝑢 = 0; 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉{𝑠, 𝑡}{𝑣:(𝑣,𝑢)𝜖𝐸{𝑣:(𝑢,𝑣)∈𝐸)

0 ≤ 𝑋𝑢𝑣 ≤ 𝐹𝑢𝑣; 𝐹𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸.

In this study, a proposed solution is presented to

solve this problem using Grey Wolf Optimization
(GWO). The GWO algorithm was introduced by
Mirjalili et al. (2014). This algorithm is inspired by
species of wolves (the Grey Wolf). The technique
imitates the hunting procedures followed by Grey

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:raja.masadeh@wise.edu.jo
https://doi.org/10.21833/ijaas.2017.07.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2017.07.014&domain=pdf&

Masadeh et al/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

96

Wolves in nature. Wolves divide leadership
hierarchy in their pack into four main types: Alpha,
Beta, Delta, and Omega. In order to accomplish the
three main steps of haunting are searching for prey,
encircling prey and attacking prey.

The remainder of this paper is organized as
follows: section II recites related work in details.
While section III contains the Grey Wolf
Optimization and how it works. Section IV includes
the proposed algorithm “MAXFLOW-GWO”. The
experimental results are presented in section V.
Finally, section VI draws the conclusion and future
work.

2. Related works

Maximum Flow problem is a heavily studied
combinatorial optimization issues by many
researchers using various methods (Tarjan, 1983;
McHugh, 1990). Ford and Fulkerson (1956) method
was the first method that helps to get the Maximum
Flow from source to destination by using it
augmenting path algorithm. Dinic (1970) and
Cormen et al. (2009) show that if each augmenting
path in the shortest one, the algorithm will perform
O (mn) augmentation steps; where the number of
nodes represented by n and number of arcs is noted
as m. Edmonds and Karp (1972) presented a new
algorithm where its results were closely to Dinic
(1970) algorithm. In addition, the shortest path
where the length of the arc equals one could be got
with the assistant of Breadth First Search (Thomas et
al, 2001; Eppstein, 1998). Ever after that, there are
many algorithms have been developed. Ahuja et al.
(1989) ameliorated the shortest augmenting path
algorithm (Thomas et al., 2001). Orlin (2013)
presented ameliorated polynomial time algorithm
that determined on the sparse network. As well as,
he displayed how to solve the max-flow problem in O
(mn), where m= O (n), in addition how to solve the
max-flow in O (nm + m31/16 log2 n) time, where m= O
(n1.06). Thus, this is the improvement of the
algorithm that presented by King et al. (1994) which
solved the Max Flow in O (nm𝑙𝑜𝑔m/(n log n)

𝑛) time.

The Maximum Flow problem considered to be
more difficult in applying genetic algorithm than
other popular graph problems due to its various rare
characteristics (Munakata and Hashier, 1993). Thus,
Munakata and Hashier (1993) applied the Genetic
algorithm (GA) to discover the Maximum Flow from
the source to the sink in a weighted directed graph.
In this approach, each solution is performed by a
flow matrix. Two characteristics mainly exist in the
fitness function - balancing vertices and the
saturation rate of the flow. The initial population is
chosen randomly at the beginning, the next
generation will be better after using a genetic
algorithm. Thus, optimal or near optimal solutions
are found after a specific number of iterations.
Barham et al. (2016) presented Chemical Reaction
Optimization algorithm (CRO) for Max Flow
problem. The CRO is presented by Lam and Li

(2010), which is a meta-heuristic algorithm that
designed for solving combinatorial optimization
problems. The MaxFlow-CRO algorithm is proposed
to find the best Maximum Flow that could be
transported from the source to the sink in a flow
network with no constraints for the capacity and
violation where the flow in every arc rests within the
upper bound value of the capacity.

3. Grey wolf optimization

The inspiration for Grey Wolf Optimizer (GWO) is
a Species of Wolves called the Grey Wolf (Canis
lupus), by imitating its hunting methods and
hierarchical pack distribution which are referred to
as Alpha, Beta, Delta, and Omega. These are used to
imitate the series of commands as shown in Fig. 1
(Mirjalili et al., 2014). As seen, sovereignty reclines
from top to bottom. The first level is Alpha which is
the leader, which is not necessary to be the most
robust wolf but the superior to other wolves in
managing the pack. Thus it is responsible for the
decision making. The second level is Beta which
helps Alpha in decision making. Thus, it represents
as the mentor to Alpha and an educator to the pack.
The third level is Delta controls Omega. This
category could be Scouts, sentinels, elders, hunters
and caretakers. Finally, the fourth level is Omega that
acts as the scapegoat and gives up to all dominant
wolves. The Hunting behavior of Grey Wolves is split
into three procedures: chasing, encircling and
attacking the victim as described in (Mirjalili et al.,
2014).

Fig. 1: Hierarchy of grey wolf

3.1. Chasing phase

The Algorithm considers that Alpha (α) as the
best solution, Beta (β) as the second best solution
and Delta (δ) as the third best solution. However,
Omega represents the rest candidate solutions. Thus
the hunting is led by the dominant wolves (α, β, and
δ). In other words, Grey Wolves could recognize the
position of the prey through an iteration process and
surround it.

3.2. Encircling phase

In this phase, Grey Wolves encircle the victim
through the hunt (optimization). In addition, it is
mathematically modeled by Eqs. 2 and 3.

𝛼

𝛽

𝛿

𝜔

Masadeh et al/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

97

�⃗⃗� = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| (2)

𝑋 (𝑡 + 1) = |𝑋 𝑝(𝑡) − 𝐴 . �⃗⃗� | (3)

Such that D illustrates the distance between the

location of the prey (Xp) and the location of the wolf
(X) and the existing iteration number is cited by t. A
and C are coefficient vectors as in Eqs. 4 and 5.

𝐴 = 2𝑎 . 𝑟 1 − 𝑎 (4)

𝐶 = 2 �⃗⃗� 2 (5)

where, r1 and r2 are chosen randomly in [0, 1] and a
is decreased from 2 to 0 linearly over the iteration.

3.3. Hunting phase

The hunt generally is led be the leader (α).
However, sometimes Beta and Delta contribute in
hunting. In another hand, there is no idea about the
position of the prey that represents the optimum.
Therefore, the algorithm assumes that Alpha, Beta,
and Delta have preferable knowledge about the
position of prey. Thus, the algorithm saves the first
three best solutions then update the locations of the
rest wolves (Omega) depending on the position of
the dominant wolves (best search agent) according
to the Eqs. 6, 7 and 8.

�⃗⃗� 𝛼 = |𝐶 1. 𝑋 𝛼 − 𝑋 |, �⃗⃗� 𝛽 = |𝐶 2. 𝑋 𝛽 − 𝑋 |, �⃗⃗� 𝛿 = |𝐶 3. 𝑋 𝛿 − 𝑋 | (6)

𝑋 1 = 𝑋 𝛼 − 𝐴 𝛼. (�⃗⃗� 𝛼), 𝑋 2 = 𝑋 𝛽 − 𝐴 𝛽. (�⃗⃗� 𝛽), 𝑋 3 = 𝑋 𝛿 −

𝐴 𝛿 . (�⃗⃗� 𝛿) (7)

𝑋 (𝑡 + 1) =
�⃗� 1+ �⃗� 2+�⃗� 3

3
 (8)

3.4. Attacking phase (Exploitation)

In this case; when the prey stops proceeding, the
hunting (optimization) ends by assaulting it. It
proceeds by reducing the value of a from 2 to 0
linearly. Thus this reduces the value of A which is a
random value in [-a, a]. When A<1, candidate
solutions tend to converge towards the prey. As well
as that the algorithm prone to the local stagnation.

3.5. Search for prey phase (Exploration)

To avert the local stagnation, random values A is
greater than 1 or less than -1, are used to force the
Grey Wolves far from the victim. This emphasizes
exploration and searches globally. When A>1
compels the Grey Wolves to space from the victim to
discover fitter prey. There is another component that
affects this phase which is C and belongs to [0,
2].This component represents random weights of the
prey in determining the distance. When C>1, it
emphasizes its influence. However, when C<1, it
reduces its effect.

4. Algorithm “MAXFLOW-GWO”

The Grey Wolf Optimization algorithm
(MAXFLOW-GWO) is developed to solve the

maximum flow problem (MFP). It is theoretically
analyzed; and it is implemented and tested on
datasets with different sizes. The run time
performance of the MAXFLOW-GWO algorithm is
compared with run time of the Ford-Fulkerson
algorithm on the same datasets. By applying Grey
Wolf Optimization to get the optimal solution for
Maximum Flow problem, Figs. 2-6 show the
proposed pseudo-code for "MaxFlow-GWO"
algorithm.

Fig. 2: Pseudo-code for "MaxFlow-GWO" Algorithm

4.1. Initialization stage

As presented in Fig. 2 initialize the Grey Wolf
population, which is chosen at random. From these
wolves select one of them randomly to be the prey
and choose another one to be the source.

4.2. Fitness function

The goal of fitness function is to measure the
minimum distance between each wolf and all
centroids to assign to the nearest one and join to that
cluster to be a member of its pack. As presented in
Fig. 3.

Fig. 3: Fitness function

4.3. Clustering

According to Mirjalili et al. (2014), let the group
size between 5 and 12 wolves. Thus, K-means
clustering algorithm is used to group each pack at
least 5 wolves and at most 12 wolves. At the
beginning, the number of clusters is calculated by Eq.
9. Moreover, the number of centroids is measured by
Eq. 10. Thereafter, centroids are chosen randomly.
Each wolf assigned to its nearest centroid by using
Eq. 11. The double notation in the equation denotes
that it is a function of Euclidean distance (Fong et al.,
2014). Such that Xi is the wolf (i) and Cenj is the
centroid in the cluster j.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐶𝑒𝑖𝑙𝑙𝑖𝑛𝑔 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑙𝑣𝑒𝑠

12
) (9)

1. Initialize the Grey Wolf population Xi (i=1, 2, 3, ……, n)
2. Initialize A, C and a.
3. Choose the wolf (source) and prey (sink) randomly.
4. Calculate the numbers of clusters by equation 9.
5. Calculate the numbers of centroids by equation 10.
6. Calculate the fitness for each wolf Xi.
7. Invoke Cluster Function.
8. Store the shortest path between source and destination.
9. Set the Capacity C (i, j) randomly for each edge (i, j)

between Wolf (i) and Wolf (j).
10. Invoke Max-Flow Function
11. Return the best solution.

1. For each Wolf (i)
2. Calculate the distance between each wolf (i)

and all centroids by the equation 11.
3. If Wolf (i) is not assigned
4. Assign Wolf (i) to its closest centroid.
5. End For (if i= max number of wolves)

Masadeh et al/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

98

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (10)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑖𝑛 ||𝑋𝑖 − 𝐶𝑒𝑛𝑗||. (11)

As shown in Fig. 4, each cluster k finds the first

three best solutions randomly at the beginning. In
other words, it finds α, β, and δ. During the three
iterations, the fittest search agents update their
positions around the prey relying on the positions α,
β and δ by using Eqs. 2-8. At the end, each cluster has
three best solution which is locally optimal, then
compare these local optimal with others local
optimal in other clusters. The minimum local optimal
presents the first global optimal. Then, the second
local optimal illustrates the second global optimal
and so on.

Fig. 4: Cluster function

4.4. Shortest path function

After all, clusters are constructed, three factors
are determined: α, β, and δ. The factor α represents
the nearest wolf to the prey in the cluster, the next
closest wolf to the prey in the cluster is represented
as β, and δ is the third nearest wolf to the prey in the
same cluster. The lowest values of α, β, and δ are
presented the minimum local optimal for each
cluster. Then, the entire local optimal are compared,
to find the first global optimal that is considered as
the first step in the shortest path. The second global
optimal is considered as the second step in the
shortest path. And so on until the source is reached.
In other words, not all clusters are included in the
shortest path, depending on the distance between
two wolves, as illustrated in Fig. 5.

Fig. 5: Shortest path between source and destination

4.5. Max-Flow function

After applying the previous functions, all wolves
are grouped, each 12 in one cluster, and got all
clusters done, the Max Flow function is applied.
Numbers of edges between all wolves are found
depending on the shortest path. In other words,

there exist many paths from the wolf (source) to the
prey (sink). In this function, Ford- Fulkerson
algorithm (King et al., 1994) is used, which depends
on the augmenting paths that found in the residual
graph, which is used at each iteration. The flow on
any edge could be raised or reduced. Thus, reducing
the flow value on some edge may be substantial for
with a view to being able to transfer more flow.
Iterate the augmenting flow until the residual
network graph has not any more augmenting paths.

Fig. 6: Max-Flow function

For the initial Maximum Flow of the population O
(N E F), where N indicates the number of wolves
(vertices), E is the number of edges between wolves
and F represents the Maximum Flow in the graph.
Below is the complexity calculation for each function
and method:

 The fitness function is O (n); Cluster function is O
(n), the shortest path between source and sink is O
(n); where n is the number of nodes.

 Maximum Flow function: while loop is repeated Fm
times at most, where Fm represents the maximum
flow. Moreover, the cost of finding the augmenting
path is O (E).In case the graph is complete, the Fm
=E. Thus the run time complexity of Maximum Flow
function is O (E *Fm) = O (E2).

 Total time complexity of ”MaxFlow-GWO"
Algorithm is O (n +E2)

5. Experimental results

In order to evaluate the performance of the
MaxFlow-GWO, MATLAB program based simulation
program was developed by using a dataset of
different network sizes, which indicates the number
of vertices in the graph. Moreover, the dataset sizes
were taken between 50 and 1000 vertices according
to previous studies (Barham et al., 2016). In this
study, each scenario was repeated 10 experiments
based on previous studies (Barham et al., 2016), and
not depending on one experiment, to generate
accuracy by using these specifications: Intel (R) core
(TM) i7-47000MQ CPU with 2.40 GHz, 16 GB RAM
and Windows7, 64-bit operating system. Table 1
presents the average run time for different datasets
which were calculated in seconds. It is clear from Fig.
7 that the time complexity is quadratic polynomial
which means it increases with increasing the

1. For each cluster K
2. Find the first three search agents α, β and δ.
3. While (iteration <= max_iteration)
4. Update the position of the current search agents
5. By the equations 6, 7 and 8.
6. Calculate the fitness of all search agents.
7. Update a, A and C.
8. Update α, β, and δ.
9. Iteration= iteration +1.
10. End while.
11. Return α for each cluster K.

1. Compare all local_optimal clusters
2. Set Global_Optimal = nearest cluster to the

destination
3. Path [1]= Global_Optimal
4. For cluster[i]
5. Global_Optimal= Min (all Local_Optimal -
6. Global_Optimal)
7. Path [j: 2 to source]= j_Global_Optimal
8. End for

1. Select all paths from the wolf (source) to the prey
(destination).

2. For each edge (i, j) in the graph G.
3. Flow of edge= 0.
4. While there is a path (p) from the wolf (source) to

the prey in the remaining graph.
5. Remaining_Capacity(p)= min (remaining_capacity

(i, j) for this edge in the path (p).
6. Flow= flow+ remaining_capacity (p)
7. For each edge (i, j) in the path (p)
8. If (i, j) is a forward edge
9. Flow (i, j) = Flow (i, j) + remaining_capacity (p).
10. Else
11. Flow (i, j) = Flow (i, j) - remaining_capacity (p).
12. Return the maximum flow

Masadeh et al/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

99

number of vertices in the graph. In addition to that, it
is fairly a good enough performance. Depending on
Fig. 7 and Fig. 8, it is obvious that the experimental
and theoretical results are very approximate. Ford-
Fulkerson algorithm is chosen to compare with
because it is the general algorithm that solved
maximum flow problem (Goldberg and Tarjan, 1988;
Chintan et al., 2010) and to validate the MAXFLOW-
GWO algorithm. Moreover, the same specifications
that were used for the proposed algorithm as shown
in Table 2. In addition to that, it was repeated 10
experiments for each data size. Thus, Fig. 9 shows
the comparison between MAXFLOW-GWO algorithm
and Ford-Fulkerson algorithm in term of average
running time for experimental results. It is obvious
from Fig. 9 that the proposed algorithm
accomplished better performance, especially for
networks with large sizes.

Fig. 7: Average running time for experimental results for

MAXFLOW-GWO

Fig. 8: Theoretical runtime

6. Conclusion

This paper proposes a novel solution to Maximum
Flow problem using the Grey Wolf Optimization
algorithm. The GWO is used to get the optimal
solution for Maximum Flow problem. The maximum
flow problem was reviewed. The proposed MaxFlow-
GWO algorithm was introduced and explained how it
can be used to solve the maximum flow problem. The
run time complexity of the algorithm is presented.
The theoretical run time complexity is estimated to
be O (N E F), where N indicates the number of

wolves (vertices), E is the number of edges between
wolves and F represents the Maximum Flow in the
graph. The time complexity of MaxFlow-GWO
algorithm is proven theoretically to be O (n+ E2).
Experimentally, the run time complexity is obtained
as a quadratic polynomial, on the tested dataset,
which indicates it increases proportionally to the
number of vertices in the graph. Thus, theoretical
and experimental results converge well.

Fig. 9: The experimental results for Ford-Fulkerson

Algorithm and MAXFLOW-GWO

Table 1: Run time of MaxFlow-GWO for various datasets
Number of

nodes
Average run

times/ Seconds
Network

Size
Average run

times/ Seconds
50 0.115 550 98.236

100 0.328 600 137.827
150 0.936 650 163.578
200 2.356 700 219.327
250 5.866 750 253.184
300 13.603 800 286.781
350 22.706 850 362.921
400 38.236 900 399.954
450 51.625 950 432.627
500 76.365 1000 472.345

Table 2: Run time of Ford-Fulkerson for various datasets
Number
of nodes

Average run
times/ Seconds

Network
Size

Average run
times/ Seconds

50 0.1225 550 312.3281
100 0.3419 600 479.9688
150 0.9788 650 700.4531
200 2.4656 700 930.7500
250 6.8125 750 1175.7812
300 15.2344 800 1559.79687
350 27.0781 850 2017.125
400 54.2656 900 2606.609378
450 114.5000 950 3210.9375
500 198.6094 1000 3878.0625

However, since institutional communication

professions have been continually exploring effective
measurement metrics for their communication
initiatives, focusing on how communication practices
can be effectively linked to improved performance
(Altamony et al., 2012; Alkalha et al., 2012; Masa’deh
et al., 2015; Shannak et al., 2010), further research is
required. As a future direction, MaxFlow-GWO can
be developed to obtain better performance by
implementing it on parallel computer. Moreover, a
comparison between this proposed algorithm and
other Metaheuristics which are utilized to solve the
Maximum Flow problem could be presented.

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 r
u

n
n

in
g

ti
m

e
/

Se
co

n
d

Number of nodes

0

100

200

300

400

500

600

100 200 300 400 500 600 700 800 900 1000

Th
eo

ri
ti

ca
l R

u
n

n
in

g
Ti

m
e

Dataset Size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 r
u

n
n

in
g

ti
m

e
/

Se
co

n
d

Dataset Size

MAXFLOW-GWO FORD-FULKERSON

Masadeh et al/ International Journal of Advanced and Applied Sciences, 4(7) 2017, Pages: 95-100

100

References

Ahuja RK, Magnanti TL, Orlin JB (1989). Network flows. In:
Nemhauser GL, Rinnooy Kan AHG, and Todd MJ (Eds.),
Optimization handbooks in Operations Research and
Management Science, 1: 211-369, Amsterdam, Netherlands.

Alkalha Z, Al-Zu’bi Z, Al-Dmour H, Alshurideh M, and Masa'deh R
(2012). Investigating the effects of human resource policies on
organizational performance: An empirical study on
commercial banks operating in Jordan. European Journal of
Economics, Finance and Administrative Sciences, 51(1): 44-
64.

Altamony H, Masa'deh R, Alshurideh M, and Obeidat B (2012).
Information systems for competitive advantage:
Implementation of an organisational strategic management
process. In the 18th IBIMA Conference on Innovation and
Sustainable Economic Competitive Advantage: From Regional
Development to World Economic, Istanbul, Turkey.

Barham R, Sharieh A, and Sliet A (2016). Chemical reaction
optimization for max flow problem. International Journal of
Advanced Computer Science and Applications, 7(8): 189-196.

Chintan J, Garg DG, and Goel SG (2010). An approach to efficient
network flow algorithm for solving maximum flow problem.
.Ph.D. Dissertation, Thapar University, Patiala, India.

Cormen TH, Leiserson CE, Rivest RL and Stein C (2009).
Introduction to algorithms. MIT Press, Cambridge, USA.

Dinic EA (1970). Algorithm for solution of a problem of maximum
flow in a network with power estimation. Soviet Math
Doklady, 11: 1277-1280.

Edmonds J and Karp RM (1972). Theoretical improvements in
algorithmic efficiency for network flow problems. Journal of
the ACM (JACM), 19(2): 248-264.

Eppstein D (1998). Finding the k shortest paths. SIAM Journal on
Computing, 28(2): 652-673.

Fong S, Deb S, Yang XS, and Zhuang Y (2014). Towards
enhancement of performance of K-means clustering using
nature-inspired optimization algorithms. The Scientific World
Journal, 2014: Article ID 564829, 16 pages. https://doi.org/
10.1155/2014/564829

Ford LR and Fulkerson DR (1956). Maximal flow through a
network. Canadian Journal of Mathematics, 8(3): 399-404.

Goldberg AV and Tarjan RE (1988). A new approach to the
maximum-flow problem. Journal of the ACM (JACM), 35(4):
921-940.

King V, Rao S, and Tarjan R (1994). A faster deterministic
maximum flow algorithm. Journal of Algorithms, 17: 447-474.

Kirkpatrick S, Gelatt CD, and Vecchi MP (1983). Optimization by
simulated annealing. Science, 220(4598): 671-680.

Lam AY and Li VO (2010). Chemical-reaction-inspired
metaheuristic for optimization. IEEE Transactions on
Evolutionary Computation, 14(3): 381-399.

Masa’deh R, Tayeh M, Al-Jarrah IM, and Tarhini A (2015).
Accounting vs. market-based measures of firm performance
related to information technology investments. International
Review of Social Sciences and Humanities, 9 (1): 129-145.

McHugh JA (1990), Algorithmic graph theory. Prentice-Hall, Upper
Saddle River, USA.

Mirjalili S, Mirjalili SM, and Lewis A (2014). Grey wolf optimizer.
Advances in Engineering Software, 69: 46-61.

Munakata T and Hashier DJ (1993). A genetic algorithm applied to
the maximum flow problem. In the 5th International
Conference on Genetic Algorithms, Urbana-Champaign,
Urbana, USA: 488-493. Available online at: http://grail.
cba.csuohio.edu/~munakata/publs/pdf/ICGA93.pdf

Orlin JB (2013). Max flows in O (nm) time, or better. In the 45th
annual ACM symposium on Theory of Computing, ACM, Palo
Alto, USA: 765-774. https://doi.org/10.1145/
2488608.2488705

Shannak R, Masa’deh R, Obeidat B, and Almajali D (2010).
Information technology investments: A literature review. In
the 14th IBIMA Conference on Global Business Transformation
Through Innovation and Knowledge Management: An
Academic Perspective, Istanbul-Turkey: 1356-1368.

Tarjan RE (1983). Data structures and network algorithms.
Society for Industrial and Applied Mathematics, Philadelphia,
USA.

Thomas H, Cormen Leiserson CE, Rivest RL, and Stein C (2001).
Introduction to algorithms. MIT press, Cambridge, USA.

https://www.google.com/search?biw=1280&bih=617&q=Cambridge,+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDbNMTZU4gAxDQszzLW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQAppPfwQwAAAA&sa=X&ved=0ahUKEwjOn9Dij5rUAhWSK1AKHbCtAccQmxMIlgEoATAW
https://www.google.com/search?biw=1242&bih=602&q=Upper+Saddle+River+New+Jersey&stick=H4sIAAAAAAAAAOPgE-LUz9U3SMkxNi1UAjMNDVIMkrSMMsqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrjNTElMLSxKKS1KJihZz8ZLAwABoJ7jdMAAAA&sa=X&ved=0ahUKEwie3oy2iJ_UAhWCOSwKHbi2CncQmxMIkAEoATAQ
https://www.google.com/search?biw=1242&bih=602&q=Upper+Saddle+River+New+Jersey&stick=H4sIAAAAAAAAAOPgE-LUz9U3SMkxNi1UAjMNDVIMkrSMMsqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKrjNTElMLSxKKS1KJihZz8ZLAwABoJ7jdMAAAA&sa=X&ved=0ahUKEwie3oy2iJ_UAhWCOSwKHbi2CncQmxMIkAEoATAQ
https://www.google.com/search?q=Philadelphia&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDPOsjRR4gAxU5Jz0rW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBr2B5vQwAAAA&sa=X&ved=0ahUKEwiztrL_tJjUAhXIVSwKHUz1CbEQmxMIhgEoATAQ
https://www.google.com/search?q=Philadelphia&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDPOsjRR4gAxU5Jz0rW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQBr2B5vQwAAAA&sa=X&ved=0ahUKEwiztrL_tJjUAhXIVSwKHUz1CbEQmxMIhgEoATAQ
https://www.google.com/search?biw=1280&bih=617&q=Cambridge,+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDbNMTZU4gAxDQszzLW0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQAppPfwQwAAAA&sa=X&sqi=2&ved=0ahUKEwjF4J-at5jUAhWFCCwKHfieA3sQmxMIlwEoATAW

	Grey wolf optimization applied to the maximum flow problem
	Introduction
	Related works
	Grey wolf optimization
	Chasing phase
	Encircling phase
	Hunting phase
	Attacking phase (Exploitation)
	Search for prey phase (Exploration)

	Algorithm “MAXFLOW-GWO”
	Initialization stage
	Fitness function
	Clustering
	Shortest path function
	Max-Flow function

	Experimental results
	Conclusion
	References

