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The problem of getting the maximum flow from source to destination in 
networks is investigated in this paper. A proposed algorithm is presented in 
order to solve Maximum Flow problem by using Grey Wolf Optimization 
(GWO). The GWO is a recently established meta-heuristics for optimization, 
inspired by grey wolves (Canis Lupus). In addition; in this current research, 
K-means clustering algorithm is used to group each 12 vertices with each 
other at one cluster according to GWO constraint. This work is implemented 
and tested various datasets between 50 vertices and 1000 vertices. The 
simulation results show rapprochement between experimental and 
theoretical results. 
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1. Introduction 

*Metaheuristic optimization mechanisms are 
emerging and becoming very popular, the primary 
categories of these techniques are Single-Solution-
Based and Population-Based. In the first category, 
the search begins with a single elect solution 
(Kirkpatrick et al., 1983).This unique elect solution is 
enhanced over several iterations. In the second 
category, it represents the optimization by starting 
with a set of random solutions. This population is 
enhanced over the course of iterations. The main 
advantage that characterizes the population-based 
Metaheuristic over the single-based algorithms is its' 
high exploration power. This power is attained as it 
works to find a global solution rather than local ones 
(Munakata and Hashier, 1993). Maximum Flow 
problem is considered as one of the various well 
known basic problems of optimization in weighted 
directed graphs. In addition, it could be applied to 
numerous applications such as computer science and 
engineering. Besides, it is solved by many 
researchers using several methods (Tarjan, 1983). 

The issue of Maximum Flow is to define an 
optimal solution for a graph which is directed and 
integer weighted; where the weight at each edge 
(arc) interconnect two vertices (nodes) representing 
the flow capacity of this arc. According to these 
constraints, the goal reaches the maximum of total 
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flow from the source to the sink. This scenario 
illustrates a simplistic version of the Maximum Flow 
problem. 

A directed flow network G= (V, E) is given, where 
the number of vertices is represented by V and the 
number of edges is noted by E. The weight at each 
edge in the graph represents the capacity Cuv which 
is nonnegative c (u, v)>= 0; where u and v belong to 
V (Cormen et al., 2009). In addition, there are two 
special vertices; the source which is start vertex and 
sink which is the target vertex (Cormen et al., 2009). 
For a vertex u in V let E (u) be the set of all edges 
generated from vertex u, and Let F = max {Cuv by (u, 
v) in E}. 

Thus, the problem is to define an optimal solution 
for a particular directed network where each edge 
has a capacity. Under these constraints, the purpose 
is to get the maximum total flow from a source 
vertex to a sink vertex (Eppstein, 1998). 
Representing the flow on the edge (u, v) in E by Xuv.a 
Max Flow Optimization Model can be obtained 
through Eq. 1 (Cormen et al., 2009). 
 
𝑀𝑎𝑥 𝑓(𝑥) = ∑ 𝑋𝑢𝑣

𝑛
(𝑢,𝑣)∈𝐸(𝑠)                                        (1) 

 
where  
 
∑ 𝑋𝑢𝑣 − ∑ 𝑋𝑣𝑢 = 0; 𝐹𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑉{𝑠, 𝑡}{𝑣:(𝑣,𝑢)𝜖𝐸{𝑣:(𝑢,𝑣)∈𝐸)   

0 ≤ 𝑋𝑢𝑣  ≤  𝐹𝑢𝑣;  𝐹𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) ∈ 𝐸.  

 
In this study, a proposed solution is presented to 

solve this problem using Grey Wolf Optimization 
(GWO). The GWO algorithm was introduced by 
Mirjalili et al. (2014). This algorithm is inspired by 
species of wolves (the Grey Wolf). The technique 
imitates the hunting procedures followed by Grey 
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Wolves in nature. Wolves divide leadership 
hierarchy in their pack into four main types: Alpha, 
Beta, Delta, and Omega. In order to accomplish the 
three main steps of haunting are searching for prey, 
encircling prey and attacking prey. 

The remainder of this paper is organized as 
follows: section II recites related work in details. 
While section III contains the Grey Wolf 
Optimization and how it works. Section IV includes 
the proposed algorithm “MAXFLOW-GWO”. The 
experimental results are presented in section V. 
Finally, section VI draws the conclusion and future 
work. 

2. Related works 

Maximum Flow problem is a heavily studied 
combinatorial optimization issues by many 
researchers using various methods (Tarjan, 1983; 
McHugh, 1990). Ford and Fulkerson (1956) method 
was the first method that helps to get the Maximum 
Flow from source to destination by using it 
augmenting path algorithm. Dinic (1970) and 
Cormen et al. (2009) show that if each augmenting 
path in the shortest one, the algorithm will perform 
O (mn) augmentation steps; where the number of 
nodes represented by n and number of arcs is noted 
as m. Edmonds and Karp (1972) presented a new 
algorithm where its results were closely to Dinic 
(1970) algorithm. In addition, the shortest path 
where the length of the arc equals one could be got 
with the assistant of Breadth First Search (Thomas et 
al, 2001; Eppstein, 1998). Ever after that, there are 
many algorithms have been developed. Ahuja et al. 
(1989) ameliorated the shortest augmenting path 
algorithm (Thomas et al., 2001). Orlin (2013) 
presented ameliorated polynomial time algorithm 
that determined on the sparse network. As well as, 
he displayed how to solve the max-flow problem in O 
(mn), where m= O (n), in addition how to solve the 
max-flow in O (nm + m31/16 log2 n) time, where m= O 
(n1.06). Thus, this is the improvement of the 
algorithm that presented by King et al. (1994) which 
solved the Max Flow in O (nm𝑙𝑜𝑔m/(n log n) 

𝑛 ) time. 

The Maximum Flow problem considered to be 
more difficult in applying genetic algorithm than 
other popular graph problems due to its various rare 
characteristics (Munakata and Hashier, 1993). Thus, 
Munakata and Hashier (1993) applied the Genetic 
algorithm (GA) to discover the Maximum Flow from 
the source to the sink in a weighted directed graph. 
In this approach, each solution is performed by a 
flow matrix. Two characteristics mainly exist in the 
fitness function -   balancing vertices and the 
saturation rate of the flow. The initial population is 
chosen randomly at the beginning, the next 
generation will be better after using a genetic 
algorithm. Thus, optimal or near optimal solutions 
are found after a specific number of iterations. 
Barham et al. (2016) presented Chemical Reaction 
Optimization algorithm (CRO) for Max Flow 
problem. The CRO is presented by Lam and Li 

(2010), which is a meta-heuristic algorithm that 
designed for solving combinatorial optimization 
problems. The MaxFlow-CRO algorithm is proposed 
to find the best Maximum Flow that could be 
transported from the source to the sink in a flow 
network with no constraints for the capacity and 
violation where the flow in every arc rests within the 
upper bound value of the capacity.  

3. Grey wolf optimization 

The inspiration for Grey Wolf Optimizer (GWO) is 
a Species of Wolves called the Grey Wolf (Canis 
lupus), by imitating its hunting methods and 
hierarchical pack distribution which are referred to 
as Alpha, Beta, Delta, and Omega. These are used to 
imitate the series of commands as shown in Fig. 1 
(Mirjalili et al., 2014). As seen, sovereignty reclines 
from top to bottom. The first level is Alpha which is 
the leader, which is not necessary to be the most 
robust wolf but the superior to other wolves in 
managing the pack. Thus it is responsible for the 
decision making. The second level is Beta which 
helps Alpha in decision making. Thus, it represents 
as the mentor to Alpha and an educator to the pack. 
The third level is Delta controls Omega. This 
category could be Scouts, sentinels, elders, hunters 
and caretakers. Finally, the fourth level is Omega that 
acts as the scapegoat and gives up to all dominant 
wolves. The Hunting behavior of Grey Wolves is split 
into three procedures: chasing, encircling and 
attacking the victim as described in (Mirjalili et al., 
2014). 

 

 
Fig. 1: Hierarchy of grey wolf 

3.1. Chasing phase 

The Algorithm considers that Alpha (α) as the 
best solution, Beta (β) as the second best solution 
and Delta (δ) as the third best solution. However, 
Omega represents the rest candidate solutions. Thus 
the hunting is led by the dominant wolves (α, β, and 
δ). In other words, Grey Wolves could recognize the 
position of the prey through an iteration process and 
surround it.  

3.2. Encircling phase 

In this phase, Grey Wolves encircle the victim 
through the hunt (optimization). In addition, it is 
mathematically modeled by Eqs. 2 and 3. 

𝛼

𝛽

𝛿

𝜔
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�⃗⃗� = |𝐶 . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|                    (2) 

𝑋 (𝑡 + 1) = |𝑋 𝑝(𝑡) − 𝐴  . �⃗⃗� |                    (3) 

 
Such that D illustrates the distance between the 

location of the prey (Xp) and the location of the wolf 
(X) and the existing iteration number is cited by t. A 
and C are coefficient vectors as in Eqs. 4 and 5. 

 
𝐴 = 2𝑎 . 𝑟 1 − 𝑎                                       (4) 

𝐶 = 2 �⃗⃗� 2                      (5) 
 

where, r1 and r2 are chosen randomly in [0, 1] and a 
is decreased from 2 to 0 linearly over the iteration. 

3.3. Hunting phase 

The hunt generally is led be the leader (α). 
However, sometimes Beta and Delta contribute in 
hunting. In another hand, there is no idea about the 
position of the prey that represents the optimum. 
Therefore, the algorithm assumes that Alpha, Beta, 
and Delta have preferable knowledge about the 
position of prey. Thus, the algorithm saves the first 
three best solutions then update the locations of the 
rest wolves (Omega) depending on the position of 
the dominant wolves (best search agent) according 
to the Eqs. 6, 7 and 8. 

 
�⃗⃗� 𝛼 = |𝐶 1. 𝑋 𝛼 − 𝑋  |, �⃗⃗� 𝛽 = |𝐶 2. 𝑋 𝛽 − 𝑋 |, �⃗⃗� 𝛿 = |𝐶 3. 𝑋 𝛿 − 𝑋 |  (6) 

𝑋 1 = 𝑋 𝛼 − 𝐴 𝛼. (�⃗⃗� 𝛼), 𝑋 2 = 𝑋 𝛽 − 𝐴 𝛽. (�⃗⃗� 𝛽), 𝑋 3 = 𝑋 𝛿 −

𝐴 𝛿 . (�⃗⃗� 𝛿)                       (7) 

𝑋 (𝑡 + 1) =
�⃗� 1+ �⃗� 2+�⃗� 3 

3
                     (8) 

3.4. Attacking phase (Exploitation) 

In this case; when the prey stops proceeding, the 
hunting (optimization) ends by assaulting it. It 
proceeds by reducing the value of a from 2 to 0 
linearly. Thus this reduces the value of A which is a 
random value in [-a, a]. When A<1, candidate 
solutions tend to converge towards the prey. As well 
as that the algorithm prone to the local stagnation.  

3.5. Search for prey phase (Exploration) 

To avert the local stagnation, random values A is 
greater than 1 or less than -1, are used to force the 
Grey Wolves far from the victim. This emphasizes 
exploration and searches globally. When A>1 
compels the Grey Wolves to space from the victim to 
discover fitter prey. There is another component that 
affects this phase which is C and belongs to [0, 
2].This component represents random weights of the 
prey in determining the distance. When C>1, it 
emphasizes its influence. However, when C<1, it 
reduces its effect. 

4. Algorithm “MAXFLOW-GWO” 

The Grey Wolf Optimization algorithm 
(MAXFLOW-GWO) is developed to solve the 

maximum flow problem (MFP). It is theoretically 
analyzed; and it is implemented and tested on 
datasets with different sizes. The run time 
performance of the MAXFLOW-GWO algorithm is 
compared with run time of the Ford-Fulkerson 
algorithm on the same datasets. By applying Grey 
Wolf Optimization to get the optimal solution for 
Maximum Flow problem, Figs. 2-6 show the 
proposed pseudo-code for "MaxFlow-GWO" 
algorithm. 

 

 
Fig. 2: Pseudo-code for "MaxFlow-GWO" Algorithm 

4.1. Initialization stage 

As presented in Fig. 2 initialize the Grey Wolf 
population, which is chosen at random. From these 
wolves select one of them randomly to be the prey 
and choose another one to be the source. 

4.2. Fitness function 

The goal of fitness function is to measure the 
minimum distance between each wolf and all 
centroids to assign to the nearest one and join to that 
cluster to be a member of its pack. As presented in 
Fig. 3. 

 

 
Fig. 3: Fitness function 

4.3. Clustering 

According to Mirjalili et al. (2014), let the group 
size between 5 and 12 wolves. Thus, K-means 
clustering algorithm is used to group each pack at 
least 5 wolves and at most 12 wolves. At the 
beginning, the number of clusters is calculated by Eq. 
9. Moreover, the number of centroids is measured by 
Eq. 10. Thereafter, centroids are chosen randomly. 
Each wolf assigned to its nearest centroid by using 
Eq. 11. The double notation in the equation denotes 
that it is a function of Euclidean distance (Fong et al., 
2014). Such that Xi is the wolf (i) and Cenj is the 
centroid in the cluster j. 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 𝐶𝑒𝑖𝑙𝑙𝑖𝑛𝑔 (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑙𝑣𝑒𝑠

12
)          (9) 

1. Initialize the Grey Wolf population Xi (i=1, 2, 3, ……, n) 
2. Initialize A, C and a. 
3. Choose the wolf (source) and prey (sink) randomly. 
4. Calculate the numbers of clusters by equation 9. 
5. Calculate the numbers of centroids by equation 10. 
6. Calculate the fitness for each wolf Xi. 
7. Invoke Cluster Function. 
8. Store the shortest path between source and destination. 
9. Set the Capacity C (i, j) randomly for each edge (i, j) 

between Wolf (i) and Wolf (j). 
10. Invoke Max-Flow Function 
11. Return the best solution. 

 

1. For each Wolf (i) 
2. Calculate the distance between each wolf (i) 

and all centroids by the equation 11. 
3. If Wolf (i) is not assigned 
4. Assign Wolf (i) to its closest centroid. 
5. End For (if i= max number of wolves) 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠               (10) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚𝑖𝑛 ||𝑋𝑖 − 𝐶𝑒𝑛𝑗||.                  (11) 

 
As shown in Fig. 4, each cluster k finds the first 

three best solutions randomly at the beginning. In 
other words, it finds α, β, and δ. During the three 
iterations, the fittest search agents update their 
positions around the prey relying on the positions α, 
β and δ by using Eqs. 2-8. At the end, each cluster has 
three best solution which is locally optimal, then 
compare these local optimal with others local 
optimal in other clusters. The minimum local optimal 
presents the first global optimal. Then, the second 
local optimal illustrates the second global optimal 
and so on. 

 

 
Fig. 4: Cluster function 

4.4. Shortest path function 

After all, clusters are constructed, three factors 
are determined: α, β, and δ. The factor α represents 
the nearest wolf to the prey in the cluster, the next 
closest wolf to the prey in the cluster is represented 
as β, and δ is the third nearest wolf to the prey in the 
same cluster. The lowest values of α, β, and δ are 
presented the minimum local optimal for each 
cluster. Then, the entire local optimal are compared, 
to find the first global optimal that is considered as 
the first step in the shortest path. The second global 
optimal is considered as the second step in the 
shortest path. And so on until the source is reached. 
In other words, not all clusters are included in the 
shortest path, depending on the distance between 
two wolves, as illustrated in Fig. 5. 

 

 
Fig. 5: Shortest path between source and destination 

4.5. Max-Flow function 

After applying the previous functions, all wolves 
are grouped, each 12 in one cluster, and got all 
clusters done, the Max Flow function is applied. 
Numbers of edges between all wolves are found 
depending on the shortest path. In other words, 

there exist many paths from the wolf (source) to the 
prey (sink). In this function, Ford- Fulkerson 
algorithm (King et al., 1994) is used, which depends 
on the augmenting paths that found in the residual 
graph, which is used at each iteration. The flow on 
any edge could be raised or reduced. Thus, reducing 
the flow value on some edge may be substantial for 
with a view to being able to transfer more flow. 
Iterate the augmenting flow until the residual 
network graph has not any more augmenting paths. 

 

 
Fig. 6: Max-Flow function 

 

For the initial Maximum Flow of the population O 
(N E F), where N indicates the number of wolves 
(vertices), E is the number of edges between wolves 
and F represents the Maximum Flow in the graph. 
Below is the complexity calculation for each function 
and method: 
 

 The fitness function is O (n); Cluster function is O 
(n), the shortest path between source and sink is O 
(n); where n is the number of nodes. 

 Maximum Flow function: while loop is repeated Fm 
times at most, where Fm represents the maximum 
flow. Moreover, the cost of finding the augmenting 
path is O (E).In case the graph is complete, the Fm 
=E. Thus the run time complexity of Maximum Flow 
function is O (E *Fm) = O (E2). 

 Total time complexity of ”MaxFlow-GWO" 
Algorithm is O (n +E2) 

5. Experimental results  

In order to evaluate the performance of the 
MaxFlow-GWO, MATLAB program based simulation 
program was developed by using a dataset of 
different network sizes, which indicates the number 
of vertices in the graph. Moreover, the dataset sizes 
were taken between 50 and 1000 vertices according 
to previous studies (Barham et al., 2016). In this 
study, each scenario was repeated 10 experiments 
based on previous studies (Barham et al., 2016), and 
not depending on one experiment, to generate 
accuracy by using these specifications: Intel (R) core 
(TM) i7-47000MQ CPU with 2.40 GHz, 16 GB RAM 
and Windows7, 64-bit operating system. Table 1 
presents the average run time for different datasets 
which were calculated in seconds. It is clear from Fig. 
7 that the time complexity is quadratic polynomial 
which means it increases with increasing the 

1. For each cluster K 
2. Find the first three search agents α, β and δ. 
3. While (iteration <= max_iteration) 
4. Update the position of the current search agents 
5. By the equations 6, 7 and 8. 
6. Calculate the fitness of all search agents. 
7. Update a, A and C. 
8. Update α, β, and δ. 
9. Iteration= iteration +1. 
10. End while. 
11. Return α for each cluster K. 

 

1. Compare all local_optimal clusters 
2. Set Global_Optimal = nearest cluster to the 

destination 
3. Path [1]= Global_Optimal 
4. For cluster[i] 
5. Global_Optimal= Min (all Local_Optimal - 
6. Global_Optimal) 
7. Path [j: 2 to source]= j_Global_Optimal 
8. End for 

 

1. Select all paths from the wolf (source) to the prey 
(destination). 

2. For each edge (i, j) in the graph G. 
3. Flow of edge= 0. 
4. While there is a path (p) from the wolf (source) to 

the prey in the remaining graph. 
5. Remaining_Capacity(p)= min (remaining_capacity 

(i, j) for this edge in the path (p). 
6. Flow= flow+ remaining_capacity (p) 
7. For each edge (i, j) in the path (p) 
8. If (i, j) is a forward edge 
9. Flow (i, j) = Flow (i, j) + remaining_capacity (p). 
10. Else 
11. Flow (i, j) = Flow (i, j) - remaining_capacity (p). 
12. Return the maximum flow 
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number of vertices in the graph. In addition to that, it 
is fairly a good enough performance. Depending on 
Fig. 7 and Fig. 8, it is obvious that the experimental 
and theoretical results are very approximate. Ford-
Fulkerson algorithm is chosen to compare with 
because it is the general algorithm that solved 
maximum flow problem (Goldberg and Tarjan, 1988; 
Chintan et al., 2010) and to validate the MAXFLOW-
GWO algorithm. Moreover, the same specifications 
that were used for the proposed algorithm as shown 
in Table 2. In addition to that, it was repeated 10 
experiments for each data size. Thus, Fig. 9 shows 
the comparison between MAXFLOW-GWO algorithm 
and Ford-Fulkerson algorithm in term of average 
running time for experimental results. It is obvious 
from Fig. 9 that the proposed algorithm 
accomplished better performance, especially for 
networks with large sizes.  

 

 
Fig. 7: Average running time for experimental results for 

MAXFLOW-GWO 
 

 
Fig. 8: Theoretical runtime 

6. Conclusion 

This paper proposes a novel solution to Maximum 
Flow problem using the Grey Wolf Optimization 
algorithm. The GWO is used to get the optimal 
solution for Maximum Flow problem. The maximum 
flow problem was reviewed. The proposed MaxFlow-
GWO algorithm was introduced and explained how it 
can be used to solve the maximum flow problem. The 
run time complexity of the algorithm is presented. 
The theoretical run time complexity is estimated to 
be O (N E F), where N indicates the number of 

wolves (vertices), E is the number of edges between 
wolves and F represents the Maximum Flow in the 
graph. The time complexity of MaxFlow-GWO 
algorithm is proven theoretically to be O (n+ E2). 
Experimentally, the run time complexity is obtained 
as a quadratic polynomial, on the tested dataset, 
which indicates it increases proportionally to the 
number of vertices in the graph. Thus, theoretical 
and experimental results converge well.  

 

 
Fig. 9: The experimental results for Ford-Fulkerson 

Algorithm and MAXFLOW-GWO 
 

Table 1: Run time of MaxFlow-GWO for various datasets 
Number of 

nodes 
Average run 

times/ Seconds 
Network 

Size 
Average run 

times/ Seconds 
50 0.115 550 98.236 

100 0.328 600 137.827 
150 0.936 650 163.578 
200 2.356 700 219.327 
250 5.866 750 253.184 
300 13.603 800 286.781 
350 22.706 850 362.921 
400 38.236 900 399.954 
450 51.625 950 432.627 
500 76.365 1000 472.345 

 

Table 2: Run time of Ford-Fulkerson for various datasets 
Number 
of nodes 

Average run 
times/ Seconds 

Network 
Size 

Average run 
times/ Seconds 

50 0.1225 550 312.3281 
100 0.3419 600 479.9688 
150 0.9788 650 700.4531 
200 2.4656 700 930.7500 
250 6.8125 750 1175.7812 
300 15.2344 800 1559.79687 
350 27.0781 850 2017.125 
400 54.2656 900 2606.609378 
450 114.5000 950 3210.9375 
500 198.6094 1000 3878.0625 

 
However, since institutional communication 

professions have been continually exploring effective 
measurement metrics for their communication 
initiatives, focusing on how communication practices 
can be effectively linked to improved performance 
(Altamony et al., 2012; Alkalha et al., 2012; Masa’deh 
et al., 2015; Shannak et al., 2010), further research is 
required. As a future direction, MaxFlow-GWO can 
be developed to obtain better performance by 
implementing it on parallel computer. Moreover, a 
comparison between this proposed algorithm and 
other Metaheuristics which are utilized to solve the 
Maximum Flow problem could be presented. 
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